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Fleming and his associates conducted research on the following

topics:

a) Stochastic control under partial observations. For the case of

'- partially observed diffusion processes a study of "relaxed" controls and

of an associated separated control problem (certainty-equivalence prin-

ciple) was made in Ref. [1]. A separated control problem for a general

class of controlled, partially observed Markov processes appears in [2].

Connections with adaptive control of Markov processes are under contin-

uing study.

b) Nonlinear filtering. Analytical and numerical techniques for

approximately optimal nonlinear filters are under study by Fleming's

Ph.D. student R. McGwier. The analytical results take the form of a

regular perturbation expansion, while the numerical results are based

on moving finite elements. Preliminary results are given in [3] with

details to appear in McGwier's thesis.

c) Large deviations for nearly deterministic processes. Results

of Ventsel-Freidlin type for nearly deterministic processes of diffusion

or jump type are obtained in Sheu's thesis [2], using stochastic control

-. methods. In improved form they appear in [4,5].

->' - d) Transition and invariant densities for nearly deterministic

- diffusions. Asymptotic expansions for transition densities were obtained

x. - in (6]. These are a step toward the more difficult problem of justifying

an expansion for invariant densities, in terms of a small parameter

describing the variance of noise driving the diffusion process. Partial
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results on the latter problem have been obtained by Sheu.

Fleming presented a plenary address [7] at the 1983 International

. Congress of Mathematicians.

*References

1. W.H. Fleming and M. Nisio, On stochastic relaxed controls for
partially observed diffusions, Osaka Math. J. (to appear).

- 2. S-J Sheu, Optimal control and its application to large deviation
theory, Ph.D. Thesis, Brown University 1982.

3. W.H. Fleming and R. McGwier, A regular perturbation expansion in
nonlinear filtering, Proc. 22nd IEEE Conf. on Decision and Control,
Dec. 1983.

4. S-J Sheu, Stochastic control and exit probabilities of jump processes
to appear in SIAM J. on Control and Optimization.

5. S-J Sheu, Stochastic control and principal eigenvalue, Stochastics
Vol. 11 (1984), pp. 191-211.

6. S-J Sheu, Asymptotic expansion for transition density of diffusion
Markov process with small diffusion, to appear in Stochastics.

7. W.H. Fleming, Optimal control of Markov processes, Proc. Internat.
Congress Math, Warsaw, 1983.

Kushner completed a major monograph on approximation methods in

stochastic systems theory. The book develops several very useful methods
and discusses many complicated and realistic practical applications.

The methods are powerful and useful for the analysis of both discrete

parameter and continuous parameter systems with wide band width random

inputs or disturbances, and develops a theory of stability for 'near'

Markovian systems. The major idea is that the typical system is hard

to analyze - so one must seek 'computable' and 'reasonable' approxima-

tions. The book goes about this in a systematic and thorough fashion.
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APPROXIMATION AND WEAK CONVERGENCE Accession For-

METHODS FOR RANDOM PROCESSES, WITH NTIS CRAaI

APPLICATIONS TO STOCHASTIC SYSTEMS THEORY UD23IL10,1111B
* Uxitn lf lca~o_ E_

Harold J. Kushner Distibuton/

Ava abiitCodes

Division of Applied Mathematics and Engineering Dist Ava r ."

Brown University I

Providence, Rhode Island 02912

I. Introduction. I

COP,
This book is concerned with methods for approximating 'physical' Ny , t.

random processes by the much more tractable diffusion or jump-diffusion

processes, and with their applications to modelling, approximation and

analysis problems in stochastic control and communication theory.

Although we specialize the applications to these areas, the methods

are of general applicability to similar modelling and approximation

problems in many areas of physics, engineering and operations research.

Many of the results are new, and other known results have been modi-

fied to enhance their usefulness for the types of applications of

interest.

In order to motivate one particular type of problem which is of

interest, consider the frequently encountered canonical model

i = b(z) + a(z)&, where F(.) is a random process. It is a 'physical'

process, in the sense that it is obtained more or less directly from

the physical laws underlying the application. Suppose that (loosely

speaking) it fluctuates 'much more rapidly' than does z(.), or has a

wide band-width. In order to facilitate analysis, and owing to the

large assumed differences in the 'rate of fluctuation' of &(.) and

z(.). it is common practice in applications to replace &(') by (say) p

a Gaussian white noise (with or without a 'correction' term), or to

find a suitable white noise model which approximates z(-) in some sense.

With such a replacement, z(.) is (loosely speaking) turned into a

I ."¢ ... ..... .... .. .. ... .. . ... . . .. ,- , ,. .*, . -, .' ,*,'* S'". :' , : .
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Markov process, a solution to a stochastic differential equation, and a

large number of powerful analytical and numerical tools can be applied

to it. It is the availability of such tools for use on the diffusion

(or jump-diffusion) process that makes the approximations so important

and so appealing in practice, since the process z(.) will usually be

very hard to study. Such approximation ideas are used in numerous areas

of science and engineering, and a great deal has been learned in recent

"* years on the appropriate methodology and on the dependence of the func-

tions in the approximation on the dynamics of the 'physical' process.

One looks for nice approximating processes x(.) such that the distri-

butions of important quantities are close to those of z(.).

Sometimes, in applications, the approximations are just written

down following a rough heuristic argument. This might work well (and

even be validated by mathematical analysis) for simple problems, where

the dynamical terms are smooth and (') appears in a simple way. But,

if the structure of E(-) is complicated, if it depends on z(.), or

if o(x) depends on x or b(x) is discontinuous, or if the equation

is of the more complex type , = b(z, ), where b(.,.) might have a

complicated structure, then simple heuristic procedures can often yield

incorrect results, or even be unavailable. In general, they do not

provide a methodology which one can use with confidence in difficult

problems. Even in typical cases, the systems of interest can be quite

complicated, from the modelling, analysis or approximation point of

view. They can contain discontinuous functions of the state and noise

'W
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(for example the limiter function sign (-)), the noise need not be

stationary, it can depend on z(.) (be a product of the feedback in

the system) and it might occur in the dynamical equations in a compli-

cated non-linear fashion with the state. Similarly for the discrete param-

eter cases. In fact, the discrete parameter cases can be the more com-

"- plex, since they often arise from the use of recursive algorithms for

estimation, etc., and can involve rather non-linear digital processing

of the data.

Any theory of approximation involves the convergence of a paramet-

rized sequence {xc(-)} of processes to a limit process in some specific

sense. To put the above mentioned motivational problem in this form,

parametrize the bandwidth or 'rate of fluctuations' of (.) by c; as

*-. .. c goes to zero the bandwidth goes to infinity. Write z(.) and E()

..- as xc(.) and Ec(-), resp. Roughly, we imbed the true physical process

in a suitable parametrized family, and then find a process x(-) such

that x'(.) - x(.) in some specific sense. Hopefully, the limit process

will be ( a diffusion or jump-diffusion, degenerate or not)

much more tractable mathematically or numerically than is the true phy-

sical process z(-), and that the parameter value c corresponding to

this physical process will actually be small enough so that the approxi-

mation is good. (The bandwidth concept was used for motivation only; it

need not be defined or meaningful for the processes in the book.)

The mostwidely used and useful sense of limit is that of weak con-

vergence of measures (Chapter 2). This is a powerful generalization of

* .. '
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the notion of convergence of multivariate distributions, and it provides

the data and approximations of interest. Such approximations are of

interest for both the analysis and synthesis of systems. The weak con-

vergence based limit theorems have certain features in common with the

usual central limit theorem. As e -0 0, much of the specific detail of

the system is often wiped out, as for the central limit theorem, where

as the number of summands increases, the distribution of the sum depends

'less and less' on the character of each summand, and is 'closer and

'closer' to the normal or normal-Poisson distribution. Thus, for analy-

sis purposes, the limit processes are useful because they usually have

a simpler mathematical or physical structure than the original processes,

even though distributions of important quantities are close. For pur-

poses of synthesis, approximations provide a convenient vehicle for

studying the effects of system modifications. The weak convergence

techniques are widely used in operations research and in statistics, and

are now of increasing interest in control and communication theory, owing

to their usefulness in the modelling, simplification and study of complex

non-linear systems.

Chapter 1 contains a number of useful background results from prob-

ability theory. Many of the more difficult parts of the chapter are not

actually used in the rest of the book, but are introduced in order to

allow a discussion of the relationship between two points of view toward

diffusion processes. The first is as the solution to the standard Ito

or stochastic differential equation, the second is as the solution to

the so-called martingale problem of Stroock and Varadhan [SY]. The
%* .-
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second point of view is perhaps less intuitive for physicists and

engineers, but has many advantages in weak convergence analysis; in

particular, it is much easier to show that a process solves the martin-

gale problem than it is to show directly that it satisfies a stochastic

differential equation. Because of this, it is useful to understand the

equivalence (under broad conditions) of the two points of view, and a

lare part of Chapter 1 is devoted to a heuristic discussion of this

equivalence, and to the background material on martingales. Only a few.

facts from this chapter will be used in the sequel. The reader who is

interested mainly in the methodology in applications can quickly skim

this chapter. A number of basic definitions and useful results from

the theory of weak convergence are given in Chapter 2.

Three general methods are used to get the weak convergence and iden-

tify the limits, the perturbed test function method, the direct averaging

method and a method which combines some of the best features of both,

and is perhaps the most generally useful. The second method is perhaps

the easiest to use, in its domain of applicability. The first is dealt

with in Chapters 3 and 4, and the last two in Chapter 5. There are

roughly two main steps in using weak convergence theory; checking whether

there is a limit, and identifying it (and verifying its uniqueness). The

compactness or tightness criteria which we use to Check whether there is
a limit are discussed in Chapter 3. Then, given that there is a limit,

we must characterize it. To each limit process, there will be associated

an 'infinitesimal operator' or 'differential generator' A. If the limit

... .... '. .. '- . .'..o. " " , ., . .- '. .... ' ".%. "- .. %
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is the scalar valued diffusion defined by the It6 equation

dx = b(x)dt + a(x)dw, then A = b(x)a/ax + j_ a2(x)a2/ax2 . If to each

A, there is a unique process, then knowing A is equivalent to knowing

the process. The three methods use different ways of averaging the

noise effects to obtain A from the sequence xE(.) and its 'driving

noises'. Once the main steps in the general techniques are understood,

They are of value even for formal use, since they provide for an essen-

tially automatic way of constructing the operator A of the limit

process.

We try to present the ideas and results in a general enough way so

that they can be used in many interesting applications, but without even

beginning to exhaust the possibilities.

For many applications, the systems are in operation for a very long

time. Weak convergence theory in itself does not tell us much about what

happens to xc(t) for small c and large t, yet such information is

Vvital to many applications. The weak convergence results can be extended

to get the desired information, under suitable stability properties on

{xc(.)} (uniformly in c). Chapter 6 obtains usable criteria for these

stability properties. The properties of xs(t) for large t and small

- are related to the asymptotic properties of x(t), the limit diffusicn.

Invariant measures, 'almost' invariant measures, recurrence and moment

boundedness (uniformly in c), and similar stability properties are dis-

*. cussed. The results are useful more generally for the study of stability

properties of non-Markovian systems.

-.
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Some problems in singular perturbations are discussed in Chapter 7.

Chapters 8 to 10 deal with numerous applications; adaptive filters and

antenna arrays, stochastic approximations, adaptive quantifiers, input-

output statistics of important non-linear devices, phase locked loops

(with and without limiters), etc. The idea is to show how to use the

approximation techniques to obtain useful diffusion approximations to a

eanonical problem in each class, so as to facilitate its analysis.

Those applications will attest to the power and usefulness of the tech-

niques for obtaining information on hard problems, often with only a

reasonable amount of work.

Chapter 11 deals with an approximation problem which is somewhat

different from those dealt with in the previous chapters. It concerns

systems which are of interest for a long period of time, but where the

noise effects are small. A typical 'classical' problem in this area

concerns the 'small white noise' system dx' = b(xc)dt + Y'eodw, where

. is small, and w(-) is a Wiener process. Let x* = -(x) be asymp-

totically stable at x = e. In many applications in physics and engin-

eering, one is interested in mean escape times from a neighborhood of

8, or in similar 'escape time' statistics. Since this is, in general,

a ver hard problem, asymptotic methods are useful, and one seeks the

statistics (normalized in a suitable way) as c - 0. A non-ideal or

practical system would be x = b(xc) + a(xc)&c(t), where c(.) is

scaled so that its' effects are small. The computation is substantially

easier, however, with the 'white noise' ideal system. The general ideas

04



behind the estimates, for both the non-ideal and the ideal system are

treated. The proper theoretical foundation is in the theory of large

deviations. An introduction to the relevant part of the theory is pro-

vided, and several examples are discussed to ill-ustrate when one can

or cannot use the small white noise ideal models.
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